Применение нанотехнологий в дорожном строительстве

Строительство

По материалам компании «КИНПРО–Систем»

Бизнес-центр класса А, г. Красноярск

Новое направление в стабилизации грунтов

Одна из больных и больших задач России – за короткое время восполнить недостаток и улучшить качество дорог. На сегодняшний день количество и качество дорожных полотен значительно отстает от потребностей экономики и социального положения.

Для регионального развития инвестиции в сети дорог являются приоритетным направлением. Поэтому, дороги должны строится и обновляться для более длительного срока эксплуатации. С экономической стороны — по-возможности с наименьшими затратами.

На сегодняшний день существуют три основных взаимосвязанных вопроса, требующих быстрого и четкого решения — это:

Фирма «КИНПРО – Систем» из Екатеринбурга (представитель германской компании KINPRO) предлагает применение при строительстве дорог новое решение в стабилизации грунтов — технологию KINPRO NANO-System.

Технология KINPRO NANO-System дает большие преимущества в дорожном строительстве. Она позволяет сразу открывать движение по построенному участку, в то время как при обычном строительстве движение может быть начато не ранее, чем через месяц. Причем качественные характеристики полотна после обработки по этой технологии повышаются в десятки раз.

Особенности технологии

Главная задача системы – изменить свойства почвы, снизить ее капиллярность, приводящей к разбуханию.

Основание, обработанное KINPRO NANO-SYSTEM, улучшает свои качества в отношении несущей способности и водопоглощения, оставаясь в то же время полноценным строительным материалом, в отличие от бетона.

Применение новой технологии дает следующие преимущества:

Технология KINPRO NANO-System также высокоэффективна в экосистемах – близкая к природным процессам она позволяет улучшать инфраструктуру, сохраняя при этом окружающую среду: укрепить береговую линию и дно водоемов, защитить подземные воды и грунт от попадания в них вредных веществ и веществ производства на мусороотвальных зонах и промышленных площадках, стабилизировать грунт под строительство спортивных сооружений, не нарушая при этом экологию.

Принцип действия KINPRO NANO-SYSTEM

Стабилизация и уплотнение основания с KINPRO NANO-SYSTEM происходит с применением 2 компонентов:

Принцип KINPRO NANO-System заключается в стимулировании ионного обмена между частицами почвы и молекулами воды, содержащейся как в самих частицах почвы, так и окружающую их и удерживающуюся за счет сил поверхностного натяжения воды. Такая система была разработана с целью стабилизировать грунты, не используя вяжущие вещества и химические реагенты.

KINPRO Z-777 активно влияет на поры и микрочастицы основания, при этом разрушаются силы поверхностного натяжения воды, которая легко отделяется от мелких частиц грунта, что способствует ее удалению из грунта и тем самым создает условия высокого уплотнения при сжатии. К этому добавляется необратимый процесс взаимопритяжения мелких частиц основания.

KINPRO SOLID-Z — это NANO-полимерный материал, который набухая, препятствует проникновению как поверхностной воды, так и грунтовых вод, в капилляры основания.

Каждый компонент «KINPRO NANO System» является неотъемлемой частью другого. За счет их совместного действия частицы грунта при механическом уплотнении настолько сближаются друг с другом под давлением, что при этом происходит консолидация грунта, который превращается в монолит.

В результате применение технологии «KINPRO NANO System» — стабилизация грунта — увеличивает физико-механические параметры, улучшает гидроизолирующие свойства и защиту от эрозии обработанного и уплотненного грунта.

Применение технологии «KINPRO NANO System» — стабилизация грунта возможно на естественных, и особенно пучинистых грунтах, с минимальным содержанием глины от 15%, что составляет большую часть всех типов грунтов территории России.

Пример реализации

Устройство основания автомобильных дорог и проездов между домами в коттеджном посёлке Малый исток г. Екатеринбург. Сдано в эксплуатацию: июль 2008.

Время окончания работ: 12 июня 2008 г. 13:20 Модуль упругости полотна: Е = 83–113 МПа

Источник

Применение нанотехнологий в дорожном строительстве

В России уже более 1600 км дорог покрыто наноструктурированным дорожным покрытием. Что это за покрытие, зачем оно применяется и какие перспективы открывает новая технология для автодорожной отрасли страны, рассказывает Вадим Никольский, заведующий лабораторией физико-химии высокодисперсных материалов Института химической физики им. Н. Н. Семенова РАН.

Основу асфальта составляет каменная крошка и щебень. Для того чтобы из них появилось дорожное покрытие, требует вяжущее — то, что соединит эти элементы. Сегодня таким вяжущим является синтетический битум — это то, что остается от нефти после переработки, когда из нее уже выбрали все масла, мазут, мономеры и т. д.

По мере развития нефтепереработки качество битума падало — ведь из него, по сути, выжимали все «соки». Соответственно, падало и продолжает падать качество дорожного покрытия. Особенно это заметно в тех странах, где резко меняется температура.

Холодная зима, жаркое лето, резкие температурные изменения за короткие период времени (утром ударил мороз, после обеда потеплело и все начало оттаивать) — это быстро разрушает современную дорогу. К тому же такой асфальт плохо сопротивляется образованию колеи, растрескивается.

Чтобы улучшить его качество, необходимо «укрепить» битум с помощью специальных добавок. Вопрос в том, что именно добавлять. Очевидно, что такая «присадка» должна быть доступной по цене и производиться из того, чего много. Резина от автомобильных покрышек — подходящий по многим параметрам компонент. Она эластична и доступна в избытке. А если придать асфальту ее свойства, то лучшее вяжущее и представить себе сложно.

На протяжении десятков лет предпринимались многочисленные попытки объединить резиновую крошку с битумами. Разрабатывались десятки технологий, укладывались сотни различных экспериментальных участков во многих странах мира. Однако каждый раз частицы резины оказывались инородными в структуре асфальта и через какой-то период времени выкрашивались из дорожного полотна.

Решение этой проблемы нашли в конце 70-х годов в Институте химической физики им. Н. Н. Семенова РАН. Мы исследовали такое явление, как «пластическое течение». Композиционные материалы на основе полимеров подвергались одновременно интенсивному сжатию и прокручиванию («жернова» наковальни вращаются относительно друг друга), которое составляло от 5 тыс. до 20 тыс. атмосфер, на так называемой наковальне Бриджмена. При определенных нагрузках хоть и пластичный, но все-таки твердый полимер начинает течь, причем течь без нагревания.

Поэтому пластическое течение еще называют холодным. Оно происходит ниже температуры расплава. Так вот, оказалось, что в «жерновах» наковальни Бриджмена при определенных условиях можно получать высочайшей однородности смеси различных полимеров. И столь высокой однородности, почти на молекулярном уровне, до нас никто не наблюдал. Но происходили и другие фантастические по тем временам явления. Например, мы вынимали полученные в наковальне пленки — а они стабильны при комнатной температуре — рассматривали, изучали. А потом вновь помещали в наковальню, начинали вращать. И изначально однородная, прозрачная пленка вдруг становилась матовой, как будто покрывалась трещинами. Вращаем еще — и снова получаем прозрачную пленку. Однако выяснилось, что это уже другой материал, с иными свойствами.

Это выглядело как открытие другого мира — таких полимерных систем раньше просто не было.

Но мы решили пойти дальше. Во-первых, снизили силу давления на образцы, находящиеся в наковальне Бриджмена. Во-вторых, модернизировали саму наковальню: ее стало можно нагревать. Чем выше температура нагрева, тем быстрее проходили процессы «превращения» полимеров. И не только в скорости происходящих реакций оказалось дело. При определенной температуре, определенной силе сжатия и угле поворота «жерновов» наковальни полученные пленки перестали растрескиваться, а начали распадаться в тонкодисперсный порошок. То, что мы впервые проделали в лабораторных условиях с помощью наковальни Бриджмена, сегодня называется высокотемпературным сдвиговым измельчением (ВСИ).

Позже была создана машина — роторный диспергатор, которая могла производить полимерные порошки в промышленных масштабах. Если сказать упрощенно, то она представляет собой «скрученную» наковальню Бриджмена: ее «жернова» мы сделали цилиндрическими, один из которых вставлен в другой. При этом структура поверхности «жерновов» позволила снизить давление, необходимое для получения порошков, до 100–500 атмосфер. Температура, при которой происходит весь процесс, зависит от типа вещества, которое требуется переработать. И именно машины такой конструкции сегодня используются для производства модификатора асфальтобетонной смеси «Унирем», который производит проектная компания РОСНАНО — ООО «Уником». Коротко объясню, что, собственно, происходит с резиновой крошкой в промышленном диспергаторе. За счет высокой температуры и значительных сдвиговых усилий происходит не только измельчение материала, но и частичная (дискретная) девулканизация резины, причем не только на поверхности всех частиц, но и по их глубине.

При этом разрушается 15–30% всех межмолекулярных связей, а деструкции самих молекул не происходит.

На рис.: Микроскопическое изображение модификатора дорожного покрытия «Унирем»

Каждая частица, которая выходит из дисперагатора, состоит из микро- и наноблоков. Частицы достаточно слабо связанны друг с другом. В горячем битуме эти частицы самостоятельно распадаются на микро, а потом и на наноблоки, которые встраиваются в структуру асфальта. И вот уже эти наночастицы и дают желаемый эффект. Как я уже говорил, модификатор добавляют в горячий битум. Отмечу немаловажную деталь: его вводят в асфальтобетонную смесь так называемых сухим способом. То есть просто добавляют и все.

Не требуется изменения технологии производства, каких-то особых условий. Распад происходит самостоятельно, что является очень удобным для дорожного строительства. Резиновые частицы в битуме не только распадаются на микроблоки, их поверхность набухает и разрыхляется с одновременным образованием химических связей между резиновыми кластерами и молекулами битума. Таким образом, в асфальтобетонной смеси образуется структурированное на микро- и наноуровне резиново-битумное вяжущее, не проявляющее тенденции к расслаиванию и обладающее высокими адгезионными свойствами. Так, адгезия к минеральным составляющим увеличивается в 2–5 раз.

Процесс сопровождается изменением основных свойств битума — увеличением пластичности, снижением температуры хрупкости и т. д. В среднем срок службы асфальта с добавлением модификатора увеличивается на 30–50%. На 25–30% повышается сопротивление к образованию колеи.

Более того, введение мельчайшей резиновой крошки в асфальтобетон позволяет также «гасить» трещины. На краю — так называемом устье — начавшейся образовываться трещины концентрируется энергия, которая постоянно передается. За счет этого и растет разлом. Если же трещина «натыкается» на достаточно крупную частицу резины, то просто огибает ее и продолжает свое разрушительное движение. Однако совсем другая картина, когда в асфальтобетоне содержится резиновая составляющая, частицы которой измеряются нанометрами. Образующаяся трещина наночастицу обойти не способна, оказываясь в своеобразной ловушке. Под воздействием разрушающей энергии наночастица резины сперва растягивается, потом возвращается в исходное положение. В результате трещина просто теряет ту энергию, которая ей нужна для роста. Кстати, то же самое происходит и со звуковой волной.

Источник

ИННОВАЦИОННЫЕ ТЕХНОЛОГИИ В ДОРОЖНОМ СТРОИТЕЛЬСТВЕ И РЕМОНТЕ

Традиционных вариантов для устройства поверхности автомобильной дороги в мире не так уж много. В наше время их перечень становится все шире: инновационные решения в сфере дорожного строительства и ремонта позволяют сделать перемещение автотранспортных средств более безопасным, а сами дорожные одежды — более долговечными. Отдельные области приложения инноваций — дорожные основания и элементы транспортной инфраструктуры.

Повышение требований к безопасности и комфорту перемещения автотранспортом является, пожалуй, наиболее мощным драйвером в дорожно-строительной сфере. Оптимизация расходов на строительство автотрасс и сопутствующей им инфраструктуры занимает при этом почетное второе место.

Отдельные «прорывные» решения, позволяющие улучшить по одному из параметров качество дорожных одежд или основания дороги, несомненно, важны — однако много важнее в практике дорожного строительства решения комплексные, касающиеся сразу ряда эксплуатационных характеристик. К числу такого рода решений относится, к примеру, технология superpave, название которой происходит от сокращенного выражения superior performance asphalt pavements (асфальтовое покрытие с наилучшими характеристиками). Система superpave является новым продуктом Стратегической исследовательской программы по шоссейным дорогам (SHRP), реализуемой в США.

Говоря коротко, superpave — это комплексная система проектирования составов смесей, удовлетворяющих самым высоким требованиям к эксплуатационным характеристикам в зависимости от транспортной нагрузки, климатических и структурных условий на конкретном участке укладки покрытия. Улучшение эксплуатационных характеристик покрытия достигается за счет проектирования и сочетания наиболее подходящего битумного вяжущего, минерального компонента и, если это требуется, модификатора. Такой подход позволяет добиться существенного снижения количества таких дефектов дорожных покрытий, как образование колей, а также усталостного и термического растрескивания.

На этапах разработки технологии superpave выполненные согласно ей участки автодорог подвергались воздействию реальных температур повседневной эксплуатации асфальта — а кроме того, проверялась стойкость покрытия к возрастной деформации, механическим, химическим и другим воздействиям. В результате был получен комплект, объединяющий в единую систему проектирования и анализа смесей более 25 продуктов для дорожно-строительной отрасли. К их числу относятся технические условия на новые материалы, методы испытаний, методы проектирования смесей и многое другое. При этом продукты superpave применимы к конкретным климатическим условиям и транспортным нагрузкам на любом участке дорожного покрытия на территории США и Канады. Система применима для свежих и рециклизованных плотных, горячих асфальтобетонных смесей (ГАС), с модификаторами или без них, для укладки новых покрытий, а также для ресайклинга их поверхностных слоев.

Хотя в России единой системы, объединяющей лучшие наработки в сфере дорожного строительства и ремонта, пока нет, попытка создать отечественный аналог системы superpave все же имеет место. Российская попытка создать оптимальное дорожное покрытие за счет точного подбора компонентов асфальтобетонной смеси получила название «СПАС». Испытания дорожных одежд нового типа продемонстрировали, что новое покрытие имеет срок службы на 20—30% больше, чем традиционное, в том числе за счет устойчивости к образованию колеи. Тестирование нового покрытия автодорог проходило на опытных участках трасс общей протяженностью в несколько сотен километров в Северо-Западном и Уральском федеральных округах.

С необычными компонентами при укладке основания дорог и дорожных одежд в России также активно экспериментируют. Несколько лет назад на Урале, на участке автотрассы Кундавы — Варламово компанией «Южуралавтобан» были опробованы технологии укладки дорожных одежд из сталефибробетона и основания трассы с использованием бетона из кремнезема. Новые технологии были испытаны на двух экспериментальных участках длиной 150 метров каждый. В сталефибробетон под высоким давлением добавляют обрезки стальных тросов (фибру), что создает для материала дорожного покрытия своеобразный каркас. В результате прочность такого материала значительно выше, чем у бетона обычных марок, что позволяет укладывать его более тонким слоем.

Микрокремнезем, предназначенный для укладки в дорожное основание, обеспечивает значительную гибкость и возможность избежать трещин. Укладывается микрокремнезем с применением обычной дорожной техники — автогрейдеров, асфальтоукладчиков, использования какого-то дополнительного оборудования при работе с ним не требуется.

Как известно, настоящим бичом для дорожного полотна являются трещины. Вода, проникающая в микроскопические полости на дороге, при понижении температуры застывает и увеличивается в объеме. При оттаивании вода испаряется, оставляя в дорожном покрытии трещины. При эксплуатации дороги трещины становятся длиннее, глубже и шире, из-за чего дорожным одеждам требуется ремонт, а иногда и замена. Неудивительно, что усилия сотен инноваторов со всего мира направлены на то, как минимизировать, а то и вовсе избежать образования трещин, найти оптимальное средство для их заделки — либо же решить проблему кардинально, создав самовосстанавливающееся дорожное полотно.

К числу решений второго рода относится идея, выдвинутая учеными из университета города Делфт в Голландии. Они предлагают ввести в состав предназначенного для укладки асфальтобетона проводящие электричество волокна в конфигурации замкнутых контуров. При ремонте через волокна-наполнители вокруг трещины пропускается электрический ток, и в дорожном покрытии генерируется тепло такой температуры, что входящее в состав дорожного покрытия вяжущее плавится и заполняет трещину.

Швейцарские исследователи из организации Empa совместно со своими коллегами из ETH Zurich предлагают использовать при дорожном ремонте наночастицы оксида железа. При этом наночастицы вводятся в область трещин и подвергаются воздействию переменного магнитного поля. При таком воздействии материал дорожного полотна размягчается и восстанавливается — на заделку одной трещины подобным методом, как уверяют авторы технологии, требуется всего несколько секунд.

Ученые из университета Миннесоты-Дулут (США) предложили при заделке дорожных трещин использовать оригинальный состав. Он включает в себя местную железную руду, содержащую магнетит (1—2%), битум, крошку переработанных дорожных и тротуарных покрытий, а также черепицы. После заделки трещин такой смесью последняя нагревается с помощью микроволнового блока, который прикреплен к грузовику ремонтной бригады. Как утверждают авторы разработки, участок дороги, отремонтированный таким способом, не потребует повторного ремонта в несколько раз дольше, чем если бы он был восстановлен с помощью традиционного состава из битума и асфальтобетона.

Необычный способ разрешения проблемы повреждения автодорог водой, попадающей в трещины дорожного покрытия, предложили российские ученые из Тюменского индустриального университета. Для дорожных одежд вместо привычного асфальтобетона они порекомендовали использовать природный материал — диатомит. Построенные из него дороги будут отталкивать воду, что исключает образование трещин; к низким температурам окружающей среды этот материал также невосприимчив. Диатомит — кремниевая порода, обладающая высокими адсорбционными и теплоизолирующими свойствами. Учитывая то, что залежи этого материала просто огромны и находятся практически на поверхности земли, добыча диатомита обходится недорого. Сообщается, что уже построено несколько экспериментальных участков автодорог на основе диатомита; их эксплуатация определит дальнейшие перспективы использования этого материала в дорожном строительстве.

Мосты, эстакады и другие элементы транспортной инфраструктуры служат одной из важнейших областей приложения инноваций в интересующей нас области. Несомненно, одним из самых интересных и уже получивших довольно широкое распространение решений является использование высокопрочного бетона Ductal, разработанного компанией LafargeHolcim. Прочность этого материала на сжатие составляет 130—150 МПа, что в десять раз больше, чем у стандартных марок бетона. Ductal характеризуется как UHPC, ультравысокопрочный бетон, что позволяет получать из него конструкции в несколько раз тоньше и легче, чем из обычного бетона, без потери рабочих качеств — это способствует снижению веса конструкций, а кроме того, снижению расходов на доставку и монтаж.

Бетон Ductal используют при строительстве мостов, дорожных развязок, эстакад. Кроме того что изготовленные из него элементы таких конструкций обладают небольшим весом, Ductal имеет рекордно низкий показатель пористости, не подвержен абразивному износу и легко выдерживает воздействие окружающей среды и химически активных веществ. Использование этого инновационного материала существенно увеличивает срок эксплуатации искусственных сооружений, будь то дорожная развязка или мост. При этом его внешний вид также выше всяких похвал, что позволяет использовать Ductal для изготовления декоративных конструкций самого разного рода.

Кроме решений, касающихся непосредственно автотрасс и дорожных сооружений, в практике дорожного строительства важное место занимают методы для укрепления насыпей, склонов, откосов, колодцев и других элементов инфраструктуры. В этой области также имеются интересные решения. В 2011 году в пятерку изобретений, далающих мир чище и комфортнее, вошло бетонное полотно Concrete Canvas, разработанное учеными из Великобритании. За годы, прошедшие с тех пор, инновационная разработка получила распространение в строительной практике многих стран мира, включая Россию.

Бетонное полотно Concrete Canvas представляет собой два текстильных слоя с начинкой из сухой цементной смеси высокого качества. Слои соединены между собой текстильными волокнами. С внутренней стороны полотно покрыто слоем ПВХ.

Полотно хорошо гнется и легко раскатывается по любой поверхности. Его свойства кардинально меняются спустя пару часов после смачивания водой. Цементная смесь застывает — и полотно превращается в прочный слой армированного бетона. Таким образом, чтобы получить высокопрочное, долговечное, устойчивое к различным воздействиям и нагрузкам покрытие, не требуется раствор, миксеры, опалубка, оборудование для торкретирования: достаточно рулона бетонного полотна Concrete Canvas. Для крепления бетонного холста на поверхности — например, на грунте — используют обычные анкера или стальные колья со шляпками, чтобы скрепить слои между собой — герметик или строительный раствор. Полученное таким способом покрытие прочнее торкрет-бетона, не пропускает влагу, устойчиво к агрессивным средам и ультрафиолетовому излучению — а кроме того, выдерживает до 300 циклов замораживания/оттаивания. Почему бы в таком случае не использовать Concrete Canvas в качестве альтернативного дорожного полотна? Дело в том, что его укладка производится таким образом, чтобы край предыдущего куска перекрывал край следующего: это необходимо для их последующего скрепления между собой. Образующиеся при таком способе соединения стыки усложняют движение по Concrete Canvas транспортных средств. Кроме того, собранная из раскатанных рулонов инновационного полотна автодорога была бы намного дороже даже монолитной бетонной. А вот для укрепления отдельных элементов дорожной инфраструктуры она подходит идеально.

Завершая разговор о новых методах дорожного строительства и транспортной инфраструктуры, нужно отметить, что в этой области за некий инновационный подход нередко выдаются попытки решить совершенно другие задачи. Если устройство подогреваемых участков трассы (как, например, в Японии) имеет целью разрешить проблему обледенения дорожных покрытий в холодное время года, что хоть и не везде рентабельно, но практично, то имеются и многочисленные примеры совершенно бесполезных для дорожной отрасли решений. К их числу относятся укладка дорожных покрытий с использованием переработанного пластика, автомобильных покрышек и выбрасываемых океаном на берег морских водорослей. Добавление подобных компонентов в асфальтобетонную смесь в лучшем случае ничего не добавляет к эксплуатационным качествам дорожных покрытий — а строительство модульных дорог целиком из пластика (вроде того, что ведется в Голландии) даже у неспециалистов вызывает логичные вопросы о безопасности езды по ним. Спору нет, экология — важная сфера человеческой жизнедеятельности, однако откровенных спекуляций на теме защиты окружающей среды в наше время предостаточно. И выдавать за благо для дорожно-строительной отрасли сомнительные, а то и прямо убыточные технологии, позволяющие избавиться от разного рода отходов, — как минимум нечестно.

Источник

Строим вместе с сайтом StroiMagi.ru: баня и сауна
Не пропустите:
  • Применение наноматериалов в строительстве
  • Применение наноизола при строительстве видео
  • Применение навоза в строительстве
  • Применение мха в строительстве
  • Применение мусора в строительстве